

NIMPH Nanosatellite to Investigate Microwave Photonics Hardware

<u>Arnaud Fernandez</u>, Christophe Viallon, Nicolas Nolhier, Olivier Llopis, Antony Coustou, Denis Lagrange

www.csut.eu

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

NIMPH mission

Space environment

>

Radiative space environment

Earth radiation belts

- > Solar particles
 - Continuous particles emission from the Sun (solar wind)
 - Solar flares and CME: sporadic events
- Cosmic rays
 - Mainly protons and helium
 - High-energy heavy ions (SEU)

- Modified Sacred orbit : 650 km, 98° inclination
- Orbit period : 90 min
- T° fluctuations: -50, +110 °C
- Cumulated radiative dose : 20 krad on 2 years mission

Context

- Optomicrowave fibered technologies for future generation of telecommunication satellites
- Strong interest due to better performances
 - Bandwidth, mass, EMI, size
- > New payload concepts
 - Generation and distribution of optical local oscillators
 - RF frequencies optical conversion
 - Optical switching and routing of RF signals (RoF)
 - Integrated optical reception head for antennas

- Erbium doped fiber amplifier (EDFA) is taking benefit from its reputation for terrestrial telecommunication applications : Wide bandwidth, high gain, WDM applications, beyond 1 Tb/s
 - Numerous experimental and theoretical studies : quantification of RIA (Radiation induced attenuation) impact
 - New MCVD preform : drawing of radiation resistant Er³⁺ doped fibers
- However the developpement of these techno. is slowed down due to lack of mesurements in real space conditions
 - Necessity to prove the maturity of this technology : performance in spatial environment to accelerate the introduction of RoF technologies for spatial needs.

Radiation Induced Attenuation

> Gain

> Experimental conditions

- Co-propagative pumping,
- Pin=-20dBm, P_{pump}=100 mW @ 976nm, G_{0.init}~30dB
- Flow:330 Rad/h
- Constant T°

> Origins of the degradation

- rare earth impurities
- co-doping atoms like Al induce structural defects in host matrix
 - Increase of background losses

> Noise Figure

@10kRad	Telecom fiber	RAD fiber
Delta NF	>1dB	<0.2dB

Real space conditions?

- Flow: 0.6 Rad/h
- Proportionnal degradation reduction?
- Curing effect with pump laser and temperature?

Note : 1 Gy=100 Rad=1J/kg

Erbium Doped fiber Monitoring

Components acronym list :

LAAS R&T

- Signal : DFB laser
- Pump : Pump laser
- ATT : optical attenator
- IM : isolator multiplexor
- SW : opto-mecanichal switch
- C : couplor
- PD : photodetector
- CIR : circulator
- FBG : Fibered Bragg Grating

> Gain measurement

- 10 MHz direct DFB laser modulation
- Detection of the amplified intensity modulated laser carrier
 - Photodetection and 10 MHz filtering of AC component.
- Passive components degradation before and after Er³⁺ fiber canceled with switching technique (SW1) :
 - Shunt used for calibration in the IN and OUT planes

- > Reduced number of components
- > No technological overbid
- > Allows 3 erbium doped fiber under test
- However high reliability for any single component is mandatory

Quantum-beat-noise-limited NF

- Two embedded techniquesIEC definition :
 - > Optical method

LAAS R&T

$$F = \frac{2\rho_{ase}}{h\nu G}$$

> Electrical method

$$F = \frac{S_e(\nu, f)}{2h\nu G^2 P_{in}}$$

- Ability to correlate NF measurement results between different laboratories improved when this definition is used
 - Shot noise limited laser source
 - Identification of the laser spontaneous emission beat noise

Quantum-beat-noise-limited NF

- Two embedded techniques
 IEC definition :
 - > Optical method

LAAS R&T

$$F = \frac{2\rho_{ase}}{h\nu G}$$

> Electrical method

$$F = \frac{S_e(\nu, f)}{2h\nu G^2 P_{in}}$$

- Ability to correlate NF measurement results between different laboratories improved when this definition is used
 - Shot noise limited laser source
 - Identification of the laser spontaneous emission beat noise

EDMon : integration

> Optoelectronic board

Intern. M2 ESET 2018, F. Titeux

> Optimizations

- Compatibility with metrology
- Reliability tests
- Integration
- Consumption

RadFET test card

Noise test card

Opto switch test card

Reliability campaign

- Measuring Optoelectronic in a Rocket Experiment (MORE)
 - Collaboration between Supaero and EEA ESET Master students

Sercalo's coaxial type 1x4 switch

Optical payload synoptic

Optical payload integration (dec. 2017)

On Board Computer

Optical payload

LAAS R&T

- Test the structural integrity of optoelectronic devices used in EDMon
 - MORE optical payload designed by University Paul Sabatier students
- Test the proper functionality and reliability of the OBC
 - OBC designed by ISAE-Supaero students in both hardware and software

- > 18g max. acceleration
- > 80 km apogee
- > 500 kg

MORE payload

Electrical Power Supply

Reliability campaign

> Rexus 24 launch march 12th in Kiruna (Sweden)

> Typical flight timeline

EVENT	Time (s)	Altitude (km)	Range (km)
Lift-off	0.00	0.332	0.00
Burn-Out	26.00	20.38	2.83
Nose Cone Ejection	61.00	52.73	8.89
Motor Separation	66.00	56.39	9.76
Apogee	140.00	82.45	22.42
Parachute Opening	~380	4.60	~40
Payload Impact	~800	0.6	42.77

> Real flight

- Not nominal
- 5 km altitude due to rocket failure
- Payload was preseved
- Second chance with Rexus 25

Manpower and perspective

> EDMon manpower

LAAS R&T

Supervisors:

- Olivier Llopis (DR,MOST)
- Nicolas Nolhier (Pr,ESE)
- Christophe Viallon (MCF-HDR,MOST)
- Arnaud Fernandez (MCF,MOST)

www.csut.eu

Prêt au lancement 10/09/20

> NIMPH planning

Questions?

CENTRE NATIONAL D'ÉTUDES SPATIALES

www.csut.eu

Institut Supérieur de l'Aéronautique et de l'Espace

Midi-Pyrénées