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T Da What is color?

> Color: “The property possessed by an object of producing
different sensations on the eye as a result of the way it
reflects or emits light”
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> Which eye ?

Human eye? Insect eye? Mantis shrimp eye?



T Da What is color?

> “The property possessed by an object of producing different
sensations on the eye as a result of the way it reflects or
emits light”

> Light: “Electromagnetic radiation within a certain portlon of the
electromagnetic spectrum”

Clark et al., 1993 USGS
Digital Spectral Library

An energy spectrum:
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T Da What is color?

> Color: “The property possessed by an object of producing
different sensations on the eye as a result of the way it
reflects or emits light”

> Light: “Electromagnetic radiation within a certain portion of the
electromagnetic spectrum”

> Light through eyes

3 numbers 4 numbers 12 numbers!



LAAS R&T : » .
Pays Hyperspectral images: “true colors

> B&W image (aka intensity image): every pixel encodes the
integral of energy over a given wavelength interval

> Color image: every pixel encodes the energy captured along
three wavelength intervals (“3 image planes”)

> Multi-spectral images: up to a dozen image planes
> Hyperspectral images: hundreds of image planes
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> B&W image (aka intensity image): every pixel encodes the
integral of energy over a given wavelength interval

> Color image: every pixel encodes the energy captured along
three wavelength intervals (“3 image planes”)

> Multi-spectral images: up to a dozen image planes
> Hyperspectral images: hundreds of image planes

> Hyperspectral cube”
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T Da What for?

> The reflected spectrum of a surface is characteristic of its
physical nature
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> The reflected spectrum of a surface is characteristic of its
physical nature

w A wide spectrum of applications
= Astronomy
= Earth observation
= Agriculture
= (Gaz detection
= Forensic
= Medicine
= Art paint analysis
= Microscopy
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LAAS R&T
PDays Hyperspectral cameras

> Core component: dispersing element

Normal

Order -1

Grating (diffraction) Prism (refraction)

> Main difficulty: recovering a 3D data cube with a 2D sensor



LAAS R&T

Hyperspectral cameras

> Classic technology: imaging a slit through a disperser
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LAAS R&T
Hyperspectral cameras

> Classic technology: imaging a slit through a disperser

> Alternative technologies: snapshot hyperspectral imaging

* Imaging several orders
of diffraction

* +tomography-like
reconstruction




LAAS R&T
PDays Hyperspectral cameras

> Classic technology: imaging a slit through a disperser

> Alternative technologies: snapshot hyperspectral imaging

* Coded aperture snapshot
spectral imaging (CASSI)

 Compressed sensing
reconstruction
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= Tough calibration issues



LAAS R&T
PDays Hyperspectral cameras

> Classic technology: imaging a slit through a disperser
- Main issue: sequential acquisition

> Alternative technologies: snapshot hyperspectral imaging

- Several issues
= High CPU load to produce the HS cube
= Performances fixed by design
= Tough calibration issues

w All approaches produce heavy data (~ 1 Gb):
= To acquire
= To process
= To transmit
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> Principle
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A partial masking of the signal
defines a spectral filter
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> Principle (illustration)

For the same mask, different
spatial rays are differently
spectrally filtered
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An adaptive hyperspectral imager

> Principle (illustration)

For the same mask, different
spatial rays are differently
spectrally filtered



LAA%)% An adaptive hyperspectral imager

> Design: dual 4f-line
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"Single-shot compressive spectral imaging with a dual-disperser
architecture", Ghem et al. Optics Express 2007.



LAA(T)?J:}FB An adaptive hyperspectral imager

> Design: dual 4f-line
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Digital Micro-mirror Device



LAA(?)?&ID An adaptive hyperspectral imager

> Design: dual 4f-line
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LAA(?)'?&IA An adaptive hyperspectral imager

> Properties
= Possibility to acquire an intensity image

DMD CMOS

DMD fully opened:
Direct access to panchro image



LAA(?)EJ% An adaptive hyperspectral imager

> Properties
= Possibility to acquire an intensity image

= “Colocation”

All the spectral
components imaged
on the same point

No mixing of

spatial and spectral
coordinates in the
final image
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> Properties
= Possibility to acquire an intensity image

= “Colocation”

= |ndependence
of lines

Lines are independent
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= “Colocation”

= |ndependence
of lines

= Simplicity of the model ANz xm) =Ac+2f/(Ba) — zm/a



LAA%?QFA An adaptive hyperspectral imager

> Properties
= Possibility to acquire an intensity image

= “Colocation”

= |ndependence
of lines

= Simplicity of the model MZf,Zm) = Ae +25/(Ba) — zm/a
= Programmable acquisition

> \/arious acquisition schemes



LAAFT)%QJJD First proof of concept

> Design implementation

Beam Opti
F1 ) : ptical
Splitter H Coupler

;

Fiber
CMOS Light

| camera Source




LAA(?)TITJFA First proof of concept




LAAS R&T

First proof of concept

> Scanning a slit on the DMD o
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“bi-A” illumination




“SDayb Overview of the system possibilities

> The control of the DMD allows to:
= Configure the system for a given purpose / characteristic
= Control the system to optimize its output (active perception paradigm)

> Taxonomy of acquisition schemes, along 2 “dimensions”
1. Type of recovered information (defined by operational goals)
- Full HS cube
- Specific information (e.g. a set of given spectra)
2. Way to control the system
- Pre-configured DMD patterns
- On-line controlled / adapted patterns

> Criteria to consider for application contexts:
= Number of acquisitions

= Computational load to recover the information
= Quantity/quality of recovered information



“SDayb Overview of the system possibilities

> Example 1: scanning slit
= Fills the whole cube

CCD




LAAS R&T

Overview of the system possibilities

> Example 2: monochromatic imager
= Random access to any spectral plane in one acquistion
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LAAS R&T

Overview of the system possibilities

> Example 3: spectrum response image
= Exhibits the presence of a given spectrum in one acquisition

RN
CMOS CMOS

I sl 4N
Monochromatic Spectrum
image correlation




“SDayb Overview of the system possibilities

> Example 4: generalized bayer mosaics
= Numerous possible patterns

LT

zEcfal=Es




LAAS R&T

> Example 5: near-snapshot partitioning
= 2 acquisitions: 1 panchro, 1 controlled

Overview of the system possibilities

Initial homogeneous region

SLM Pattern

Xml Xr;13

Filtered Final Image
An3
A2
A1




“SDayb Overview of the system possibilities

> Example 6: quadratic regularization

= Recovering the full cube from a small set of random DMD acquisitions
(PhD of Ibrahim Ardi, IRAP/LAAS)
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LAA%%@’ Latest prototype

> Really engineered
> Images the visible 500-700 nm
> Integrated acquisition & DMD control




LAA(T)?QFB Earth observation applications?

> Configurability yields a series of trade-offs in terms of:
= Number of acquisitions
= Computational load to recover the information
= Quantity/quality of recovered information



LAA(?)%TA Earth observation applications?

> Configurability yields a series of trade-offs in terms of:
= Number of acquisitions
= Computational load to recover the information
= Quantity/quality of recovered information

> Matrix sensor in a push-broom configuration:
= Time delayed integration
= Real-time adaptive control of the acquisitions

: :

L L

TDI (acquisition n) TDI (acquisition 2) TDI (acquisition 1)




LAAS R&T .
PDays As a conclusion

> Co-design: interdisciplinary
cross fertilization

Adaptive
hyperspectral

imager Active

perception
paradigm



