

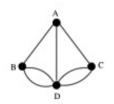
CNR

cnrs

Combinatorial optimization methods for energy management

Sandra Ulrich Ngueveu

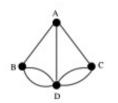
ngueveu@laas.fr



Operations research (maths + algorithmics + computer sc.) to solve decision pbs

Combinatorial explosion : O(n!) solutions

20 nodes $\approx 1e^{17}$ solutions

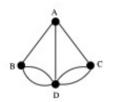

> "Brute-Force" Method

Nodes	
10	
15	
19	
27	
35	
40	
50	

Operations research (maths + algorithmics + computer sc.) to solve decision pbs

Combinatorial explosion : O(n!) solutions

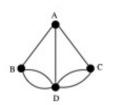
20 nodes $\approx 1e^{17}$ solutions


- » "Brute-Force" Method
- > Proc. 3GHz : 3 op / nano second

Nodes	Proc. 3 GHz	
10	1/100s	
15	1 h	
19	1 an	
27	8× age univers	
35	?	
40	?	
50	?	

Operations research (maths + algorithmics + computer sc.) to solve decision pbs

Combinatorial explosion : O(n!) solutions

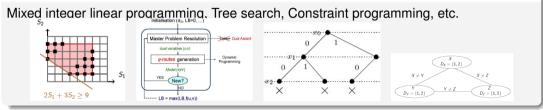

- 20 nodes $\approx 1e^{17}$ solutions
 - > "Brute-Force" Method
 - > Proc. 3GHz : 3 op / nano second
 - Proc. Planck : 1 op / Planck time (5.39 × 10⁻⁴⁴)s

Nodes	Proc. 3 GHz	Proc. Planck
10	1/100s	
15	1 h	
19	1 an	
27	8× age univers	
35	?	5/1000s
40	?	12 ans
50	?	4000× age univers

Operations research (maths + algorithmics + computer sc.) to solve decision pbs

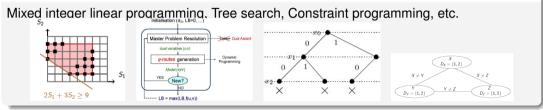
Combinatorial explosion : O(n!) solutions

20 nodes	\approx	$1e^{17}$	solutions
----------	-----------	-----------	-----------

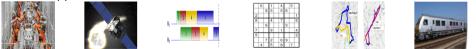

- » "Brute-Force" Method
- > Proc. 3GHz : 3 op / nano second
- Proc. Planck : 1 op / Planck time (5.39 × 10⁻⁴⁴)s

Nodes	Proc. 3 GHz	Proc. Planck
10	1/100s	
15	1 h	
19	1 an	
27	8× age univers	
35	?	5/1000s
40	?	12 ans
50	?	4000× age univers

Theoretical analysis of classes of problems and generic solution methods


Solving combinatorial optimization problems

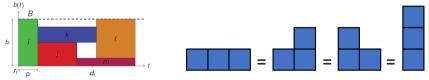
Powerful tools and methods



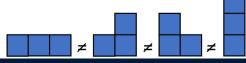
Solving combinatorial optimization problems

Powerful tools and methods

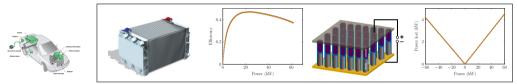
Various applications



When tackling a practical problem, there are two elements to consider : the modeling phase and the solving phase (decomposition methods, ...)


Before 2008-2010 :

> Energetic resources : equivalent to man-hours / materials / machines

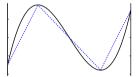

Energetic reasoning (P. Lopez 90s), RCPSP with energy resources (C. Artigues et al.), etc. After 2010

> Energy sources : energy transfer, energy losses, dynamics



Energy optimization in hybrid electric vehicles

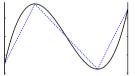
Energy sources characteristics : power limits (kW), efficiency (%), capacity (kWs) ...


Find per instant the optimal power split between energy sources to minimize the total fuel consumption.

Modeling phase

- > Intrinsic non linearities : non linear conversion/consumption functions
 - approximate with piecewise linear functions

MINLP solution methods


Solving phase

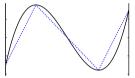
Difficulties when considering real energy sources

Modeling phase

LAAS R&T

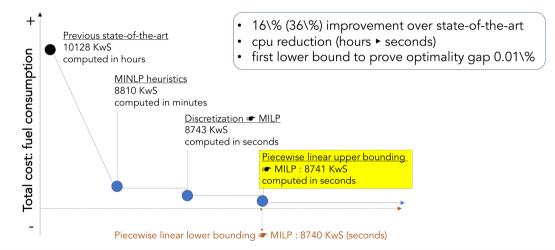
- > Intrinsic non linearities : non linear conversion/consumption functions
 - approximate with piecewise linear functions
 - + (more) tractable problems
 - try and error approach : No guarantees on the solution quality, undefined number of iterations
 - global optimality cannot be guaranteed
 - MINLP solution methods

Solving phase


Difficulties when considering real energy sources

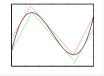
Modeling phase

LAAS R&T


- > Intrinsic non linearities : non linear conversion/consumption functions
 - approximate with piecewise linear functions
 - + (more) tractable problems
 - try and error approach : No guarantees on the solution quality, undefined number of iterations
 - global optimality cannot be guaranteed
 - MINLP solution methods
 - + global optimality guaranteed if carried out to completion
 - only for small/medium instances

Solving phase

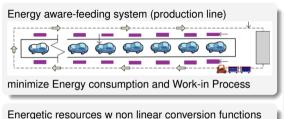
Results obtained for hybrid electric vehicules



How it works, Why it works

New two-step solution scheme : (Ngueveu et al., 2014, 2016, 2018)

Step 1 : Piecewise linear bounding of the nonlinear energy transfer/efficiency functions

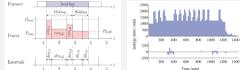


Step 2 : Reformulation of the problem into two mixed integer problems (MILP)

- > solve with a black box MILP solver
- > or design a dedicated solution method (only one needed)

3rd Robert Faure ROADEF prize 2018 (https://www.laas.fr/public/fr/node/1741)

What happens if the problem is not easy to solve?



LAAS R&T

constraint propagation algorithms : "Energy reasoning"

C. Artigues, C. Briand, E. Hébrard, N. Jozefowiez, P. Lopez, S. U. Ngueveu + A. Haït (ass. res.). 4 phD : M. Guemri (2013), Y. Gaoua (2014), M. Nattaf (2016), Y. He (2017). 1 postdoc : G. Simonin (2012-2014) Several interships

Production scheduling with energy costs, case study : foundry (Min energy cost) / steel plant (load tracking)

hybrid MILP/CP method, mixed continuous/discrete models

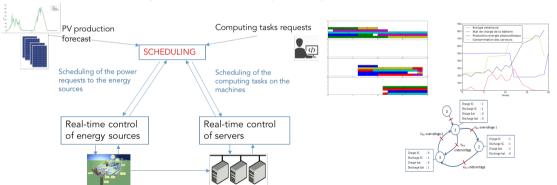
Dynamic

Scheduling at minimal energy consumption cost distantion / R . | Br0

Dantzig-Wolfe decomposition, column generation method

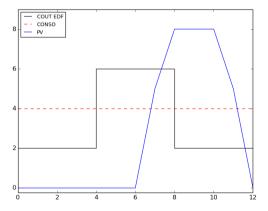
Focus on LAAS Project OPA

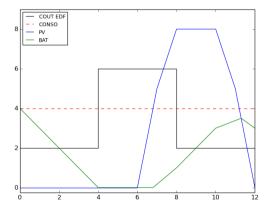
Our interest : Long term / short term planning / link with control

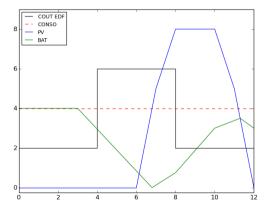


Poster and demonstrations tomorrow during your visit of the platform ©




Focus on LAAS Project OPA


Our interest : Long term / short term planning / link with control



Thank you for your attention.