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Combinatorial optimization

Operations research (maths + algorithmics + computer sc.) to solve decision pbs

Combinatorial explosion : O(n!) solutions

20 nodes ≈ 1e17 solutions

> ”Brute-Force” Method

> Proc. 3GHz : 3 op / nano second

> Proc. Planck : 1 op / Planck time
(5.39 × 10−44)s
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Solving combinatorial optimization problems

Powerful tools and methods
Mixed integer linear programming, Tree search, Constraint programming, etc.

Various applications

When tackling a practical problem, there are two elements to consider : the modeling
phase and the solving phase (decomposition methods, ...)
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LAAS research on energy and combinatorial problems

Before 2008-2010 :
> Energetic resources : equivalent to man-hours / materials / machines

Energetic reasoning (P. Lopez 90s), RCPSP with energy resources (C. Artigues et al.), etc.

After 2010
> Energy sources : energy transfer, energy losses, dynamics

Combinatorial optimization with energy sources Nattaf et al, S.U. Ngueveu et al 90s,
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Energy optimization in hybrid electric vehicles

Energy sources characteristics : power limits (kW), efficiency (%), capacity (kWs) ...

0 20 40 60
0

0.2

0.4

Power (kW)

Effi
ci

en
cy

�60 �40 �20 0 20 40 60
0

2

4

Power (kW)

Po
w

er
lo

st
(k

W
)

Find per instant the optimal power split between energy sources to minimize the total fuel
consumption.
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Difficulties when considering real energy sources

Modeling phase
> Intrinsic non linearities : non linear conversion/consumption functions

∎ approximate with piecewise linear functions

+ (more) tractable problems
- try and error approach : No guarantees on the solution quality,

undefined number of iterations
- global optimality cannot be guaranteed

∎ MINLP solution methods

+ global optimality guaranteed if carried out to completion
- only for small/medium instances

Solving phase
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Results obtained for hybrid electric vehicules
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How it works, Why it works

New two-step solution scheme : (Ngueveu et al., 2014, 2016, 2018)

Step 1 : Piecewise linear bounding of the nonlinear energy transfer/efficiency functions

Step 2 : Reformulation of the problem into two mixed integer problems (MILP)

> solve with a black box MILP solver
> or design a dedicated solution method (only one needed)

3rd Robert Faure ROADEF prize 2018 (https ://www.laas.fr/public/fr/node/1741)
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What happens if the problem is not easy to solve ?

Energy aware-feeding system (production line)

minimize Energy consumption and Work-in Process

Energetic resources w non linear conversion functions

constraint propagation algorithms : “Energy reasoning”

C. Artigues, C .Briand, E. Hébrard, N. Jozefowiez, P.
Lopez, S. U. Ngueveu + A. Haı̈t (ass. res.).
4 phD : M. Guemri (2013), Y. Gaoua (2014), M. Nattaf
(2016), Y. He (2017). 1 postdoc : G. Simonin
(2012–2014) Several interships

Production scheduling with energy costs, case study :
foundry (Min energy cost) / steel plant (load tracking)

hybrid MILP/CP method, mixed continuous/discrete models

Scheduling at minimal energy consumption cost

Dantzig-Wolfe decomposition, column generation method
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Focus on LAAS Project OPA

Our interest : Long term / short term planning / link with control

Poster and demonstrations tomorrow during your visit of the platform ,
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Illustrative example
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Thank you for your attention.


